About

This is default featured slide 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

Senin, 30 Januari 2012

Menginstall Sistem Operasi Berbasis GUI (Windows XP SP 3)

Menginstalasi Sistem Operasi Yg berbasis GUI Menggunakan Sistem Operasi windows XP SP(service Pack) 3

Untuk menginstalasi Sistem Operasi memerlukan CD OS,CD Driver
        











   






1)    Merestart Komputer
2)    Memasuki ‘’BIOS’’ cara untuk memasuki “BIOS” sbb:
Pada saat merestart computer tekan tombol  Delete pada saat booting secara otomatis sistem akan megalihkan ke “BIOS”
- Pada saat  memasuki bios lalu pilih menu boot


Akan muncul pilihan seperti gambar berikut :
 
- Lalu pilih Boot Device priority
Akan muncul pilihan seperti di bawah ini :


 
- Memastikan Boot Device Priority yang pertama adalah CDROM =PM-ML-DT-STD
Jika settingannya sudah benar lalu tekan F10 lalu OK



3) Memasukan CD Operasi Sistem XP SP 3 pada saat ingin menyimpan pengaturan
    “BIOS”  lalu restart computer
4) Pada saat booting Muncul tulisan press any key tekan tombol apa saja yang
    terdapat pada keyboard.
5) Pada saat sudah menekan sembarang tombol akan Muncul gambar seperti di bawah
    ini



Tunggu sampai loading selesai
Kemudian muncul sistem pembagian partisi seperti di gambar berikut:



Jika sudah muncul Tekan D di bagian C: ,lalu enter,dan L


Gunanya Untuk munghapus disk dari sistem operasi yang sudah di instal sebelumnya.


Dan menekan enter di C:
Pilih Format The partition using the NTFS file sistem
seperti gambar di bawah ini :
 
Lalu tekan enter ,sistem akan memformat
seperti gambar di bawah ini
 
6) Menunggu sampai formating selesai
Ketika formating selesai sistem akan mengcopying file
 
7) Selesai mengcopy sistem akan merestart secara otomatis
Pada saat sistem sudah menyala sistem akan menginstalasi Operasi Sistem  Seperti di bawah ini
 
Akan ada pilihan seperti di bawah ini :
 
Tekan Next
 
Memberikan nama,dan organisasi pada computer
Lalu klik Next
 
Gambar di atas di biarkan saja lalu tekan next
 
Mengatur tanggal ,waktu ,dan time zone
Tekn next


 
Menunggu sampai instalasi selesai
Sistem akan merestart ulang komputer
 
Menunggu sampai ada perintah selanjutnya
 
Tekan OK pada tulisan tersebut
 
Tekan Ya
.
8) Menyelesaikan instalasi OS
 
Tunggu sampai selesai dan tunggu sampai perintah berikutnya
 
Click next
 
Pilih Help protect my PC by Turning on automatic updates now
lalu Click next
 
Memberi nama adminnya lalu Click Next
 
9) Penyelesaian Instalasi OS


Kamis, 26 Januari 2012

Resistor


RESISTOR

Sebuah resistor adalah terminal dua komponen elektronik yang menghasilkan tegangan pada terminal yang sebanding dengan arus listrik melewatinya sesuai dengan hukum Ohm:
V = IR

Resistor adalah elemen dari jaringan listrik dan sirkuit elektronik dan di mana-mana di sebagian besar peralatan elektronik. Praktis resistor dapat dibuat dari berbagai senyawa dan film, serta resistensi kawat (kawat terbuat dari paduan Resistivitas tinggi, seperti nikel / krom). Karakteristik utama dari sebuah resistor adalah resistensi, toleransi, tegangan kerja maksimum dan power rating. Karakteristik lainnya meliputi koefisien temperatur, kebisingan, dan induktansi. Kurang terkenal adalah perlawanan kritis, nilai yang disipasi daya di bawah batas maksimum yang diijinkan arus, dan di atas batas yang diterapkan tegangan. Perlawanan kritis tergantung pada bahan yang merupakan resistor dan juga dimensi fisik, melainkan ditentukan oleh desain. Resistor dapat diintegrasikan ke dalam sirkuit hibrida dan dicetak, serta sirkuit terpadu. Ukuran, dan posisi lead (atau terminal) yang relevan dengan peralatan desainer; resistor harus secara fisik cukup besar untuk tidak terlalu panas ketika menghilangkan kekuasaan mereka.
Konstruksi

Lead pengaturan
Melalui komponen-lubang biasanya memiliki mengarah meninggalkan tubuh axially. Lainnya telah mengarah datang dari tubuh mereka radial bukan sejajar dengan sumbu resistor. Komponen lain mungkin SMT (surface mount technology) sedangkan resistor daya tinggi mungkin memiliki salah satu dari mereka dirancang mengarah ke dalam heat sink.

Komposisi karbon
Resistor komposisi karbon terdiri dari silinder padat resistif kawat elemen dengan embedded mengarah atau logam tutup akhir yang memimpin terikat kawat. Tubuh resistor dilindungi dengan cat atau plastik. Awal abad ke-20 resistor komposisi karbon telah uninsulated tubuh; memimpin kabel terbungkus di sekitar ujung batang dan elemen perlawanan disolder. Resistor selesai dicat untuk kode warna dari nilainya. Elemen resistif terbuat dari campuran tanah halus (bubuk) karbon dan bahan isolasi (biasanya keramik). Sebuah resin memegang campuran bersama-sama. Resistensi ditentukan oleh rasio mengisi bahan (bubuk keramik) ke karbon. Konsentrasi yang lebih tinggi dari karbon, konduktor yang lemah, menghasilkan resistensi yang lebih rendah. Resistor komposisi karbon yang umum digunakan pada 1960-an dan sebelumnya, tetapi tidak begitu populer untuk penggunaan umum sekarang sebagai jenis lain memiliki spesifikasi yang lebih baik, seperti toleransi, tegangan ketergantungan, dan stres (resistor komposisi karbon akan berubah nilai ketika stres dengan lebih-tegangan ). Selain itu, jika kadar air internal (dari eksposur untuk beberapa jangka waktu ke lingkungan lembab) adalah signifikan, solder panas akan menciptakan reversibel non-perubahan dalam nilai resistansi. Resistor ini Namun, jika tidak pernah mengalami Overvoltage juga tidak terlalu panas itu sangat bisa diandalkan. Mereka masih tersedia, namun relatif cukup mahal. Nilai berkisar dari pecahan dari suatu ohm hingga 22 megohms.

Karbon film
Sebuah film karbon diendapkan pada substrat isolasi, dan sebuah heliks dipotong untuk menciptakan panjang, jalan sempit resistif. Berbagai bentuk, ditambah dengan tahanan karbon, (berkisar 90-400 nΩm) dapat memberikan berbagai resistensi. [1] Karbon film resistor power rating menampilkan berbagai 0,125 W sampai 5 W pada 70 ° C. Resistensi yang tersedia berkisar antara 1 ohm sampai 10 megom. Resistor film karbon dapat beroperasi antara suhu -55 ° C sampai 155 ° C. Ini memiliki 200-600 volt tegangan kerja maksimum jangkauan.

Tebal dan tipis
Resistor film tebal menjadi populer selama tahun 1970-an, dan paling SMD (permukaan perangkat mount) resistor hari ini adalah dari jenis ini. Perbedaan utama antara film tipis dan resistor film tebal tidak aktual ketebalan film, melainkan bagaimana film ini diterapkan pada silinder (aksial resistor) atau permukaan (SMD resistor). Resistor film tipis dibuat oleh sputtering (metode deposisi vakum) yang bahan resistif ke substrat isolator. Film ini kemudian terukir dalam cara yang sama ke yang lama (subtraktif) proses untuk membuat sirkuit tercetak, yaitu permukaan dilapisi dengan foto-materi sensitif, kemudian ditutup dengan sebuah pola film, disinari dengan sinar ultraviolet, dan kemudian yang terbuka lapisan foto-sensitif dikembangkan, dan yang mendasari film tipis terukir pergi. Karena waktu selama yang dilakukan memercik dapat dikontrol, ketebalan lapisan tipis dapat dikontrol secara akurat. Jenis bahan ini juga biasanya berbeda yang terdiri dari satu atau lebih keramik (keramik logam) konduktor seperti tantalum nitrida (TAN), ruthenium dioksida (RuO2), timbal oksida (PbO), bismut ruthenate (Bi2Ru2O7), nikel kromium (NiCr), dan / atau bismut iridate (Bi2Ir2O7).
Hambatan dari kedua tipis dan tebal resistor setelah pembuatan film sangat tidak akurat; mereka biasanya dipotong ke nilai yang akurat oleh pemangkasan kasar atau laser. Resistor film tipis biasanya ditentukan dengan toleransi sebesar 0,1, 0,2, 0,5, atau 1%, dan dengan koefisien suhu 5 hingga 25 ppm / K. Resistor film tebal dapat menggunakan keramik konduktif yang sama, tetapi mereka dicampur dengan disinter (bubuk) gelas dan beberapa jenis cairan sehingga dapat komposit layar-dicetak. Ini gabungan dari kaca dan konduktif keramik (keramik logam) materi tersebut kemudian menyatu (dipanggang) dalam oven sekitar 850 ° C. Resistor film tebal, ketika pertama kali dibuat, mempunyai toleransi 5%, tapi toleransi standar telah meningkat hingga 2% atau 1% dalam beberapa dekade terakhir. Koefisien temperatur resistor film tebal yang tinggi, biasanya ± 200 atau ± 250 ppm / K; 40 Kelvin (70 ° F) perubahan suhu dapat mengubah resistansi sebesar 1%. Resistor film tipis biasanya jauh lebih mahal dibandingkan resistor film tebal. Sebagai contoh, resistor SMD film tipis, dengan 0,5% toleransi, dan dengan 25 ppm / K suhu koefisien, ketika membeli dalam jumlah reel ukuran penuh, sekitar dua kali biaya 1%, 250 ppm / K resistor film tebal.

Film logam
Jenis umum aksial resistor hari ini disebut sebagai resistor film logam. Leadless elektrode logam wajah (MELF) resistor sering menggunakan teknologi yang sama, tetapi adalah resistor berbentuk cylindrically dirancang untuk permukaan meningkat. Perhatikan bahwa resistor jenis lain (misalnya, komposisi karbon) juga tersedia dalam paket MELF. Resistor film logam biasanya dilapisi dengan nikel kromium (NiCr), tetapi mungkin akan dilapisi dengan salah satu bahan keramik logam yang tercantum di atas untuk resistor film tipis. Tidak seperti resistor film tipis, bahan dapat diterapkan menggunakan teknik yang berbeda dari sputtering (meskipun itu adalah salah satu teknik seperti itu). Juga, tidak seperti film tipis resistor, nilai resistansi ditentukan dengan cara memotong heliks melalui lapisan bukan oleh etsa. (Hal ini mirip dengan cara resistor karbon dibuat.) Hasilnya adalah toleransi yang masuk akal (0,5, 1, atau 2%) dan koefisien suhu (biasanya) 25 atau 50 ppm / K.

Wirewound
Wirewound resistor biasanya dibuat oleh gulungan kawat logam, biasanya nichrome, sekitar keramik, plastik, atau fiberglass inti. Ujung-ujung kawat yang disolder atau dilas ke dua topi atau cincin, menempel pada ujung inti. Perakitan dilindungi dengan lapisan cat, plastik, atau lapisan enamel dipanggang pada suhu tinggi. Kawat memimpin kekuasaan rendah biasanya wirewound resistor antara 0,6 dan 0,8 mm dalam diameter dan kalengan untuk memudahkan penyolderan. Untuk resistor wirewound kekuatan yang lebih tinggi, baik luar keramik kasus atau luar aluminium kasus di atas lapisan isolator digunakan. Aluminium-cased jenis dirancang harus terpasang ke wastafel panas menghilangkan panas; yang diberi kekuasaan digunakan tergantung pada cocok dengan heat sink, misalnya, kekuatan 50 W akan diberi nilai resistor panas di sebagian kecil dari daya disipasi jika tidak digunakan dengan heat sink. Wirewound besar resistor dapat diberi nilai selama 1.000 watt atau lebih. Karena Resistor wirewound kumparan mereka mempunyai induktansi lebih diinginkan daripada jenis lain resistor, meskipun berliku kawat di bagian dengan arah terbalik bergantian dapat memperkecil induktansi. Teknik lain mempekerjakan bifilar berkelok-kelok, atau flat mantan tipis (untuk mengurangi luas penampang kumparan). Bagi sebagian besar menuntut rangkaian resistor dengan Ayrton-Perry berliku digunakan.


Foil resistor
Hambatan utama elemen dari resistor foil paduan khusus foil beberapa mikrometer tebal. Sejak diperkenalkan pada 1960-an, foil resistor memiliki presisi yang terbaik dan stabilitas dari setiap resistor tersedia. Salah satu parameter penting yang mempengaruhi stabilitas koefisien suhu resistansi (TCR). Kertas timah yang TCR resistor sangat rendah, dan telah lebih ditingkatkan selama bertahun-tahun. Satu rentang ultra-precision resistor foil menawarkan TCR dari 0,14 ppm / ° C, toleransi ± 0.005%, stabilitas jangka panjang (1 tahun) 25 ppm, (3 tahun) 50 ppm (lebih ditingkatkan 5-kali lipat oleh hermetik penyegelan) , stabilitas di bawah beban (2000 jam) 0,03%, thermal EMF 0,1 μV / ° C, -42 dB kebisingan, koefisien tegangan 0,1 ppm / V, 0,08 μH induktansi, kapasitansi 0,5 pF.


Ammeter shunts
Sebuah ammeter shunt adalah tipe khusus-sensing arus resistor, memiliki empat terminal dan nilai di milliohms atau bahkan mikro-ohm. Alat pengukur arus, dengan sendirinya, biasanya dapat menerima arus terbatas. Untuk mengukur arus tinggi, arus melewati shunt, di mana jatuh tegangan diukur dan ditafsirkan sebagai arus. Tipikal shunt terdiri dari dua blok logam padat, kadang-kadang kuningan, terpasang pada dasar isolasi. Antara blok, dan disolder atau brazed kepada mereka, adalah satu atau lebih potongan koefisien temperatur rendah resistensi (TCR) manganin paduan. Ulir baut besar ke dalam blok membuat koneksi saat ini, sementara banyak-sekrup kecil memberikan sambungan tegangan. Shunts dinilai oleh arus skala penuh, dan sering memiliki jatuh tegangan sebesar 50 mV pada nilai arus.


Grid resistor
Dalam industri tugas berat aplikasi-aplikasi arus tinggi, resistor kotak konveksi besar-cooled kisi strip paduan logam cap terhubung dalam baris-baris antara dua elektroda. Industri seperti resistor dapat grade yang sama besarnya dengan lemari es; beberapa desain bisa menangani lebih dari 500 ampere saat ini, dengan kisaran resistensi memperluas lebih rendah daripada 0,04 ohm. Mereka digunakan dalam aplikasi seperti pengereman dinamis dan beban perbankan untuk lokomotif dan trem, netral AC landasan untuk industri distribusi, pengendalian beban untuk crane dan alat berat, load generator dan harmonis listrik penyaringan untuk substasiun. Istilah grid resistor kadang-kadang digunakan untuk menggambarkan sebuah resistor jenis apa pun yang terhubung ke control grid tabung vakum. Ini bukan sebuah resistor teknologi; itu adalah topologi sirkuit elektronik.

Kamis, 12 Januari 2012

LAPORAN PRODUKTIF TKJ ( BONGKAR PASANG PC)


Sebelum merakit sebuah PC pastikan peralatan yang dibutuhkan sudah tersedia, peralatan yang dibutuhkan adalah sebagai berikut: obeng, tang, AVO meter (bila ada), solder, timah solder, isolasi, tali pengikat kabel dan buku catatan. Solder maupun AVO meter jarang dipakai apabila mempergunakan komponen yang masih baik. Pengukuran arus dan tegangan listrik hanya dilakukan apabila komponen yang digunakan adalah komponen bekas yang saya tidak ketahui apakah masih baik atau tidak. Saya tidak menggunakan AVO meter pada motherboard apabila motherboard masih baik, karena saya tidak tahu titik-titik mana yang merupakan titik ukur. Kecerobohan dalam hal ini bisa menimbulkan akibat fatal. Apabila saya mempergunakan komponen baru, saya tidak perlu melakukan pengukuran arus dan tegangan dengan AVO meter. AVO meter mungkin perlu dipergunakan hanya untuk mengetahui tegangan listrik dijala-jala listrik rumah saya saja. Saya sudah mengetahui dibagian power supply komputer (terdapat didalam casing/kotak komputernya) apakah sudah diatur pada skala tegangan yang sesuai dengan tegangan listrik ditempat saya/belum. Bila type power supply-nya tergolong type otomatik saya tidak perlu khawatir. Apabila power supply-nya tergolong semi otomatik, kemungkinan saya harus memindahkan posisi saklar pengatur tegangan keposisi tegangan yang sesuai dengan tegangan listrik ditempat saya.

Selanjutnya untuk merakit komputer personal saya mengikuti langkah-langkah sebagai berikut:


1      Ambil motherboard dan letakan ketempat yang aman. Persiapkan peralatan dan buku manual dari masing komponen PC. Baut motherbooard dengan papan casing, sehingga akan lebih kuat dan aman.


2     Memasang processor pada tempatnya (soket-nya) perhatikan tanda pada processor harus ditempatkan sesuai dengan tanda yang ada pada soket tersebut (tidak boleh terbalik). Mengunci tangkai pengunci yang biasanya terdapat disisi soket processor. Perhatikan kode titik/sisi processor yang bentuk miring merupakan petunjuk agar bagian processor itu dipasang pada bagian slot yang memiliki tanda sama. Membaca dengan baik manual processor dari pabriknya. Apabila saya kurang hati-hati/terbalik memasang processor ini bisa berakibat fatal. Bila ragu saat membeli motherboard saya tanyakan kepada penjualnya. Kemudian memasang kipas pendingin diatasnya. Pada produk processor terakhir sudah dilengkapi dengan kipas pendingin.


3     Memasang memori RAM pada tempatnya dengan baik, lihat sudut memori yang biasanya berlekuk harus ditempatkan pada tempatnya secara hati-hati. Apabila saya terbalik memasangnya, maka memori akan sulit dimasukan. Pada jenis memori SDRAM, dudukan memori di motherboard memiliki pengunci yang akan bergerak mengunci bersamaan dengan masuknya memori kedalamnya.

4     Memasukan motherboard kedalam cashing (kotak komputer), mengkaitkan pengait plastik yang biasa disediakan oleh pabrik cashing, kedalam lubang yang terdapat pada motherboard. Pada sudut yang memungkinkan saya tempatkan baut, baut motherboard tersebut pada cashing untuk menghindarkan terjadinya pergeseran motherboard pada waktu memindah2kan CPU. Hati-hati memindahkan motherboard pada cashing karena bentuknya tipis kecil dan memiliki rangkaian elektronik yang rumit.

5     Memasang kabel khusus catu daya motherboard yang ada pada power supply (biasanya dituliskan P8 dan P9), kabel berwarna hitam dari kedua konektornya harus dipasang berdampingan. Apabila saya mempergunakan jenis motherboard jenis ATX, memasang kabel power khusus tersebut pada slot power khusus ATX yang terdapat pada motherboard tersebut.

6     Memasang hard disk, floppy drive pada tempat yang telah dalam cashing CPU, mengencangkan dudukannya dengan baut secara hati-hati. Bila ada CD ROM drive, pasangkan pula alat ini secara hati-hati dan dikencangkan dengan baut. Perlu diperhatikan untuk CD-ROM dan hard disk jumper terpasang dengan benar, karena akan mengidentifikasikan sebagai master/slave, karena jika salah hard disk atau CD-ROM tidak akan terdeteksi.

7     Menyambung kabel dari power supply ke slot power yang terdapat di hard disk, floppy drive, dan CD ROM drive. Perhatikan sudut konektor plastiknya pada kabel tersebut biasanya sudah dirancang pas sesuai dengan dududkan yang terdapat pada hard disk, floppy drive, atau CD ROM drive. Bila saya memasang konektor ini terbalik, maka pada saat saya memasukan konektor tersebut akan terasa sedikit sulit. Segeralah cabut konektornya dan masukan kembali pada posisi yang tepat.

        Menyambung kabel pita (kabel data) pada dudukan hard disk, floppy drive dan CD ROM drive. Kabel ini berfungsi untuk menghubungkan peralatan tersebut ke motherboard. Perhatikan sisi kabel berwarna merah harus ditempatkan pada kaki nomor satu (lihat keterangan yang dituliskan pada hard disk/floppy drive/CD ROM drive). Bila terbalik memasangkannya komputer tidak akan bekerja baik dan dapat merusak peralatan2 tersebut. Kabel yang terpasang ke floppy drive lebih sempit bila dibandingkan kabel penghubung hard disk ataupun CD ROM drive. Kabel penghubung hard disk dan CD ROM drive sama ukurannya. Untuk kabel pita strip merah pada pinggir kabel menandakan no.1

9     Menyambung kabel dari floppy drive ke slot untuk floppy drive, demikian pula menyambungkan kabel dari hard disk ke slot IDE nomor 1, dan kabel dari CD ROM ke slot IDE nomor 2. Perhatikan juga agar sisi kabel berwarna merah harus menempati kaki nomor 1 pada tiap slot. Saya bisa melihat keterangan yang tertulis di motherboard ataupun di manual motherboard.

)      Memasang VGA card pada slotnya, bila saya memiliki card dari jenis ISA, saya harus menempatkan card tersebut pada ISA slot bus di motherboard. Bila saya memiliki card VGA jenis PCI, saya harus memasang card tersebut pada slot bus PCI di motherboard. Tetapi jika VGA berupa VGA onboard, tinggal mengatur dalam BIOS.

11)  Memasang expansion card tambahan pada PCI maupun ISA. Expansion card dapat berupa LAN card sound card, TV tunner card , video capture, dll. Setelah itu mengencangkan dengan baut dengan dudukan cashing PC.
12)  Menghubungkan konektor kabel penghubung tombol “Reset” ke pin “Reset” yang terdapat pada motherboard. Hubungkan pula konektor kabel penghubung speaker ke pin bertuliskan speaker yang ada pada motherboard. Sering ditulis dengan kode LS. Beberapa cashing telah dilengkapi pula kabel lampu indikator berikut kabel penghubungnya lengkap dengan konektornya agar perakit komputer tinggal menghubungkan saja ke motherboard.
13)  Memasang kabel data dari monitor ke slot yang terdapat di carad VGA, perhatikan konektornya memiliki 3 deretan kaki yang tersusun rapi, dengan konektor berbentuk trapesium.
14)  Memasang konektor keyboard ke slot keyboard yang terdapat di motherboard. Dan perangkat yang lain.
15)   Memasang kabel listrik (power) dari layar monitor ke slot power yang terdapat dibagian belakang power supply yang telah terpasang pada cashing CPU. Bila konektornya tidak cocok, saya dapat memasang kabel listrik tersebut ke jala2 listrik rumah saya. Saya akan membutuhkan T konektor untuk membagi listrik ke monitor dan CPU yang saya  rakit. Memasang kabel listrik untuk CPU ke slot yang terdapat pada power supply di bagian belakan cashing CPU.
Sekarang saya telah berhasil merakit sebuah Personal Computer (PC), tetapi saya belum bisa mempergunakan komputer tersebut. Saya masih harus mengatur program BIOS, dan memasang (menginstal) program sistem operasi dan program aplikasi ke dalam hard disknya.
Sebelum saya mengatur program BIOS, saya cek kembali semua langkah yang telah saya lakukan tadi. Perhatikan posisi “jumper” jangan ada yang salah, demikian pula processor dan RAM serta kabel2 penghubung hard disk, floppy drive dan CD ROM drive. Setelah saya yakin benar dan sudah sesuai dengan keterangan yang tercantum dalam manual pabrik dari setiap peralatan tadi. Saya bisa melakukan pengaturan program BIOS.

Dioda

Dalam elektronika, dioda adalah komponen aktif bersaluran dua (dioda termionik mungkin memiliki saluran ketiga sebagai pemanas). Dioda mempunyai dua elektrodaaktif dimana isyarat listrik dapat mengalir, dan kebanyakan dioda digunakan karena karakteristik satu arah yang dimilikinya. Dioda varikap (VARIable CAPacitor/kondensator variabel) digunakan sebagai kondensator terkendali tegangan.
Sifat kesearahan yang dimiliki sebagian besar jenis dioda seringkali disebut karakteristik menyearahkan. Fungsi paling umum dari dioda adalah untuk memperbolehkan arus listrik mengalir dalam suatu arah (disebut kondisi panjar maju) dan untuk menahan arus dari arah sebaliknya (disebut kondisi panjar mundur). Karenanya, dioda dapat dianggap sebagai versi elektronik dari katup pada transmisi cairan.
Dioda sebenarnya tidak menunjukkan kesearahan hidup-mati yang sempurna (benar-benar menghantar saat panjar maju dan menyumbat pada panjar mundur), tetapi mempunyai karakteristik listrik tegangan-arus taklinier kompleks yang bergantung pada teknologi yang digunakan dan kondisi penggunaan. Beberapa jenis dioda juga mempunyai fungsi yang tidak ditujukan untuk penggunaan penyearahan.
Awal mula dari dioda adalah peranti kristal Cat's Whisker dan tabung hampa (juga disebut katup termionik). Saat ini dioda yang paling umum dibuat dari bahan semikonduktor sepertisilikon atau germanium.

SEJARAH
Walaupun dioda kristal (semikonduktor) dipopulerkan sebelum dioda termionik, dioda termionik dan dioda kristal dikembangkan secara terpisah pada waktu yang bersamaan. Prinsip kerja dari dioda termionik ditemukan oleh Frederick Guthrie pada tahun 1873, Sedangkan prinsip kerja dioda kristal ditemukan pada tahun 1874 oleh peneliti Jerman, Karl Ferdinand Braun.
Pada waktu penemuan, peranti seperti ini dikenal sebagai penyearah (rectifier). Pada tahun 1919, William Henry Eccles memperkenalkan istilah dioda yang berasal dari di berarti dua, dan ode (dari ὅδος) berarti "jalur".

PRINSIP KERJA
Prinsip kerja dioda termionik ditemukan kembali oleh Thomas Edison pada 13 Febuari 1880dan dia diberi hak paten pada tahun 1883 (U.S.Patent 307.310), namun tidak dikembangkan lebih lanjut. Braun mematenkan penyearah kristal pada tahun 1899. Penemuan Braundikembangkan lebih lanjut oleh Jagdish Chandra Bose menjadi sebuah peranti berguna untuk detektor radio.

Penerima radio
Penerima radio pertama yang menggunakan dioda kristal dibuat oleh Greenleaf Whittier Pickard. Dioda termionik pertama dipatenkan di Inggris oleh John Ambrose Fleming (penasihat ilmiah untuk Perusahaan Marconi dan bekas karyawan Edison) pada 16 November 1904 (diikuti oleh U.S. Patent 803.684pada November 1905). Pickard mendapatkan paten untuk detektor kristal silikon pada 20 November 1906 (U.S. Patent 836.531)

Dioda termionik
Simbol untuk dioda tabung hampa pemanasan taklangung, dari atas kebawah adalah anoda, katoda dan filamen pemanas
Dioda termionik adalah sebuah peranti katup termionik yang merupakan susunan elektroda-elektroda di ruang hampa dalam sampul gelas. Dioda termionik pertama bentuknya sangat mirip dengan bola lampu pijar.
Dalam dioda katup termionik, arus listrik yang melalui filamen pemanas secara tidak langsung memanaskan katoda (Beberapa dioda menggunakan pemanasan langsung, dimana filamen wolfram berlaku sebagai pemanas sekaligus juga sebagai katoda), elektroda internal lainnya dilapisi dengan campuran barium danstrontium oksida, yang merupakan oksida dari logam alkali tanah. Substansi tersebut dipilih karena memiliki fungsi kerja yang kecil. Bahang yang dihasilkan menimbulkan pancaran termionik elektron ke ruang hampa. Dalam operasi maju, elektroda logam disebelah yang disebut anoda diberi muatan positif jadi secara elektrostatik menarik elektron yang terpancar.
Walaupun begitu, elektron tidak dapat dipancarkan dengan mudah dari permukaan anoda yang tidak terpanasi ketika polaritas tegangan dibalik. Karenanya, aliran listrik terbalik apapun yang dihasilkan dapat diabaikan.
Dalam sebagian besar abad ke-20, dioda katup termionik digunakan dalam penggunaan isyarat analog, dan sebagai penyearah pada pemacu daya. Saat ini, dioda katup hanya digunakan pada penggunaan khusus seperti penguat gitar listrik, penguat audio kualitas tinggi serta peralatan tegangan dan daya tinggi.

Dioda semikonduktor
Sebagian besar dioda saat ini berdasarkan pada teknologi pertemuan p-n semikonduktor. Pada dioda p-n, arus mengalir dari sisi tipe-p (anoda) menuju sisi tipe-n (katoda), tetapi tidak mengalir dalam arah sebaliknya.
Tipe lain dari dioda semikonduktor adalah dioda Schottky yang dibentuk dari pertemuan antara logam dan semikonduktor (sawar Schottky) sebagai ganti pertemuan p-n konvensional.

Karakteristik arus–tegangan
Karakteristik arus–tegangan dari dioda, atau kurva I–V, berhubungan dengan perpindahan dari pembawa melalui yang dinamakan lapisan penipisan atau daerah pemiskinan yang terdapat pada pertemuan p-n di antara semikonduktor. Ketika pertemuan p-n dibuat, elektron pita konduksi dari daerah N menyebar ke daerah P dimana terdapat banyak lubang yang menyebabkan elektron bergabung dan mengisi lubang yang ada, baik lubang dan elektron bebas yang ada lenyap, meninggalkan donor bermuatan positif pada sisi-N dan akseptor bermuatan negatif pada sisi-P. Daerah disekitar pertemuan p-n menjadi dimiskinkan dari pembawa muatan dan karenanya berlaku sebagai isolator.
Walaupun begitu, lebar dari daerah pemiskinan tidak dapat tumbuh tanpa batas. Untuk setiap pasangan elektron-lubang yang bergabung, ion pengotor bermuatan positif ditinggalkan pada daerah terkotori-n dan ion pengotor bermuatan negatif ditinggalkan pada daerah terkotori-p. Saat penggabungan berlangsung dan lebih banyak ion ditimbulkan, sebuah medan listrik terbentuk di dalam daerah pemiskinan yang memperlambat penggabungan dan akhirnya menghentikannya. Medan listrik ini menghasilkan tegangan tetap dalam pertemuan.


Ada beberapa jenis dari dioda pertemuan yang hanya menekankan perbedaan pada aspek fisik baik ukuran geometrik, tingkat pengotoran, jenis elektroda ataupun jenis pertemuan, atau benar-benar peranti berbeda seperti dioda Gunn, dioda laser dan dioda MOSFET.

Dioda biasa
Beroperasi seperti penjelasan di atas. Biasanya dibuat dari silikon terkotori atau yang lebih langka dari germanium. Sebelum pengembangan dioda penyearah silikon modern, digunakan kuprous oksida (kuprox)dan selenium, pertemuan ini memberikan efisiensi yang rendah dan penurunan tegangan maju yang lebih tinggi (biasanya 1.4–1.7 V tiap pertemuan, dengan banyak lapisan pertemuan ditumpuk untuk mempertinggi ketahanan terhadap tegangan terbalik), dan memerlukan benaman bahan yang besar (kadang-kadang perpanjangan dari substrat logam dari dioda), jauh lebih besar dari dioda silikon untuk rating arus yang sama.

Dioda bandangan
Dioda yang menghantar pada arah terbalik ketika tegangan panjar mundur melebihi tegangan dadal dari pertemuan P-N. Secara listrik mirip dan sulit dibedakan dengan dioda Zener, dan kadang-kadang salah disebut sebagai dioda Zener, padahal dioda ini menghantar dengan mekanisme yang berbeda yaitu efek bandangan. Efek ini terjadi ketika medan listrik terbalik yang membentangi pertemuan p-n menyebabkan gelombang ionisasi pada pertemuan, menyebabkan arus besar mengalir melewatinya, mengingatkan pada terjadinya bandangan yang menjebol bendungan. Dioda bandangan didesain untuk dadal pada tegangan terbalik tertentu tanpa menjadi rusak. Perbedaan antara dioda bandangan (yang mempunyai tegangan dadal terbalik diatas 6.2 V) dan dioda Zener adalah panjang kanal yang melebihi rerata jalur bebas dari elektron, jadi ada tumbukan antara mereka. Perbedaan yang mudah dilihat adalah keduanya mempunyai koefisien suhu yang berbeda, dioda bandangan berkoefisien positif, sedangkan Zener berkoefisien negatif.


Dioda Cat's whisker
Ini adalah salah satu jenis dioda kontak titik. Dioda cat's whisker terdiri dari kawat logam tipis dan tajam yang ditekankan pada kristal semikonduktor, biasanya galena atau sepotong batu bara. Kawatnya membentuk anoda dan kristalnya membentuk katoda. Dioda Cat's whisker juga disebut dioda kristal dan digunakan pada penerima radio kristal.

Dioda Arus Tetap
Ini sebenarnya adalah sebuah JFET dengan kaki gerbangnya disambungkan langsung ke kaki sumber, dan berfungsi seperti pembatas arus dua saluran (analog dengan Zener yang membatasi tegangan). Peranti ini mengizinkan arus untuk mengalir hingga harga tertentu, dan lalu menahan arus untuk tidak bertambah lebih lanjut.

Esaki atau dioda terobosan
Dioda ini mempunyai karakteristik resistansi negatif pada daerah operasinya yang disebabkan oleh quantum tunneling, karenanya memungkinkan penguatan isyarat dan sirkuit dwimantap sederhana. Dioda ini juga jenis yang paling tahan terhadap radiasi radioaktif.


Dioda Gunn 

Dioda ini mirip dengan dioda terowongan karena dibuat dari bahan seperti GaAs atau InP yang mempunyai daerah resistansi negatif. Dengan panjar yang semestinya, domain dipol terbentuk dan bergerak melalui dioda, memungkinkan osilator gelombang mikro frekuensi tinggi dibuat.

Demodulasi radio
Penggunaan pertama dioda adalah demodulasi dari isyarat radio modulasi amplitudo (AM). Dioda menyearahkan isyarat AM frekuensi radio, meninggalkan isyarat audio. Isyarat audio diambil dengan menggunakan tapis elektronik sederhana dan dikuatkan.

Pengubahan daya
Penyearah dibuat dari dioda, dimana dioda digunakan untuk mengubah arus bolak-balik menjadi arus searah. Contoh yang paling banyak ditemui adalah pada rangkaian adaptor. Pada adaptor, dioda digunakan untuk menyearahkan arus bolak-balik menjadi arus searah. Sedangkan contoh yang lain adalah alternator otomotif, dimana dioda mengubah AC menjadi DC dan memberikan performansi yang lebih baik dari cincin komutator dari dinamo DC.